Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Sci Afr ; 17: e01279, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1983925

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the major health threats the world has experienced. In order to stem the tide of the virus and its associated disease, rapid efforts have been dedicated to identifying credible anti-SARS-CoV-2 drugs. This study forms part of the continuing efforts to develop anti-SARS-CoV-2 molecules and employed a computational structure-activity relationship approach with emphasis on 99 plant secondary metabolites from eight selected African medicinal plants with proven therapeutic benefits against respiratory diseases focusing on the viral protein targets [Spike protein (Sgp), Main protease (Mpro), and RNA-dependent RNA polymerase (RdRp)]. The results of the molecular dynamics simulation of the best docked compounds presented as binding free energy revealed that three compounds each against the Sgp (VBS, COG and ABA), and Mpro (COR, QOR and ABG) had higher and better affinity for the proteins than the respective reference drugs, cefoperazone (CSP) and Nelfinavir (NEF), while four compounds (HDG, VBS, COR and KOR) had higher and favorable binding affinity towards RdRp than the reference standard, ramdesivir (RDS). Analysis of interaction with the receptor binding domain amino acid residues of Sgp showed that VBS had the highest number of interactions (17) relative to 14 and 13 for COG and ABA, respectively. For Mpro, COR showed interactions with catalytic dyad residues (His172 and Cys145). Compared to RDS, COR, HDG, VBS and KOR formed 19, 18, 17 and 12 H-bond and Van der Waal bonds, respectively, with RdRp. Furthermore, structural examination of the three proteins after binding to the lead compounds revealed that the compounds formed stable complexes. These observations suggest that the identified compounds might be beneficial in the fight against COVID-19 and are suggested for further in vitro and in vivo experimental validation.

2.
All Life ; 14(1):1100-1128, 2021.
Article in English | Web of Science | ID: covidwho-1585212

ABSTRACT

The novel beta-coronavirus, SARS-CoV-2, responsible for the coronavirus disease 2019 (COVID-19) emerged in China in December 2019. Due to its high transmission and infection rate, it has spread around the world and has transformed into a ravaging global pandemic with enormously unprecedented impacts globally on human, social, and economic health. Just like SARS-CoV and MERS-CoV, there is no specific antiviral drug for its treatment. The only available therapeutics are supportive and symptom-based. Thus, scientists are harnessing various strategies to expedite drug development. One such approach is drug repurposing through computational screening of phytocompounds, which leverages proteins that are essential for the entry, replication, pathogenesis, assembly, and release of SARS-CoV-2. Here, we review the available literature on molecular docking of phytoligands against SARS-CoV-2 integral proteins, in a bid to update our current knowledge and identify the most promising molecules. The overwhelming majority of the promising lead compounds are either phenolics or terpenoids. Furthermore, of the elucidated SARS-CoV-2 targets, the main protease (3CL(pro)) appears as one of the most attractive druggable targets. Notably, compounds such as rutin, quercetin, luteolin, neoandrographolide, curcumin, and others with evident anti-inflammatory benefits, in addition to their predicted anti-SARS-CoV-2 properties, deserve further studies to validate their activity.

3.
J Biomol Struct Dyn ; 40(14): 6587-6602, 2022 09.
Article in English | MEDLINE | ID: covidwho-1085387

ABSTRACT

The outbreak of Coronavirus infection (COVID-19) has prompted the World Health Organisation (WHO) to declare the outbreak, a Public Health Emergency of International concern. As part of the efforts to discover lead compounds for clinical use, 53 molecules were screened using molecular docking and dynamic simulations (MDS) techniques to identify potential inhibitors of SARS-CoV-2 spike protein (COVID-19 Sgp) and main protease (COVID-19 Mpro) or both. Lopinavir (LPV), nelfinavir (NEF), hydroxychloroquine (HCQ), remdesivir (RDV) and an irreversible inhibitor of SARS-CoV (N3) were used as standard drugs for COVID-19 Mpro, while zafirlukast (ZFK) and cefoperazone (CSP)) as standard drugs for COVID-19 Sgp. After 100 ns of MDS, with reference to standard drugs (N3, -52.463 Kcal/mol, NEF, -51.618 Kcal/mol, RDV, -48.780 Kcal/mol, LPV, -46.788 Kcal/mol, DRV, -33.655 Kcal/mol and HCQ, -21.065 Kcal/mol), five molecules, HCR, GRN, C3G, EGCG, and K7G were predicted to be promising inhibitors of COVID-19 Mpro with binding energies of -53.877 kcal/mol, -50.653 Kcal/mol, -48.600 kcal/mol, -47.798 kcal/mol and -46.902 kcal/mol, respectively. These lead molecules were then docked at receptor-binding domain (RBD) of COVID-19 Sgp to examine their inhibitory effects. C3G, GRN and K7G exhibited higher binding energies of -42.310 kcal/mol, -32.210 kcal/mol, -26.922 kcal/mol than the recorded values for the reference drugs (CSP, -35.509 kcal/mol, ZFK, -24.242 kcal/mol), respectively. The results of the binding energy and structural analyses from this study revealed that C3G, GRN and K7G could serve as potential dual inhibitors of COVID-19 Sgp and COVID-19 Mpro, while HCR and EGCG would be inhibitors of COVID-19 Mpro.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL